Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[silver(I)-µ-4-aminobenzenesulfonato- μ -2,3-diethylpyrazine]

Hai-Yan Liu,^{a,b} Ji-Cheng Ma^a and Jin Yang^a*

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bDepartment of Chemistry and Pharmaceutical Engineering, Suihua University, Suihua 152061, People's Republic of China Correspondence e-mail: yangjinnenu@yahoo.com.cn

Received 4 October 2007; accepted 6 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.034; wR factor = 0.079; data-to-parameter ratio = 16.6.

In the title compound, $[Ag(C_6H_6NO_3S)(C_8H_8N_2)]$, the Ag^I cation is four-coordinated by three N atoms from two different 2,3-diethylpyrazine ligands and one -NH2 group of a 4aminobenzenesulfonate ligand, and one sulfonate O atom in a distorted tetrahedral coordination geometry. The Ag^I centers are doubly bridged by both types of ligands, forming a onedimensional chain. N-H···O hydrogen bonds complete the structure.

Related literature

For studies on silver sulfonates, see Liu et al., (2007). For related literature, see: Cote & Shimizu (2003).

Experimental

Crystal data

 $[Ag(C_6H_6NO_3S)(C_8H_8N_2)]$ $M_r = 416.24$ Orthorhombic, Pca21 a = 8.6095 (17) Åb = 12.322 (3) Å c = 14.342 (3) Å

Data collection

Rigaku R-AXIS RAPID CCD diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.626, \ T_{\rm max} = 0.779$

V = 1521.5 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.48 \text{ mm}^{-1}$ T = 293 (2) K $0.31 \times 0.22 \times 0.17 \text{ mm}$

13887 measured reflections 3443 independent reflections 2756 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F ²) = 0.079	H atoms treated by a mixture of independent and constrained
S = 1.05	refinement
3443 reflections	$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
207 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
3 restraints	Absolute structure: Flack (1983), with 1630 Friedel pairs
	Flack parameter: 0.02 (4)

Table 1

	Selected	bond	lengths	(A).	
--	----------	------	---------	------	--

Ag1-N2	2.287 (4)	Ag1-N1 ⁱ	2.372 (4)
Ag1-N3	2.367 (4)	Ag1-O3 ⁱⁱ	2.451 (3)
6(i)	13 11. CD	. 3 1	

Symmetry codes: (i) $-x + \frac{3}{2}$, $y, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y, z - \frac{1}{2}$

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-HN2···O2 ⁱⁱⁱ	0.85 (3)	2.16 (3)	2.923 (6)	149 (5)
$N3-HN1\cdots O2^{iv}$	0.86 (3)	2.27 (3)	3.042 (5)	150 (4)
Summature as daar (:::)		1. (:)	1	

Symmetry codes: (iii) -x + 1, -y + 1, $z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}$, $y, z - \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20060304) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2112).

References

- Cote, A. P. & Shimizu, K. H. (2003). Coord. Chem. Rev. 245, 49-64.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299-7311.
- Rigaku, (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2707 [doi:10.1107/S160053680704901X]

catena-Poly[silver(I)-*µ*-4-aminobenzenesulfonato-*µ*-2,3-diethylpyrazine]

H.-Y. Liu, J.-C. Ma and J. Yang

Comment

Silver(I) sulfonate coordination polymers have received much attention for their interesting structural features and potential application (Cote & Shimizu, 2003). Recently, silver(I) sulfonate compounds with nitrogen-based secondary ligands have been studied (Liu *et al.*, 2007). Herein, we present a new sulfonate coordination polymer, namely [Ag(dep)(L)] (I), where dep = 2,3-diethylpyrazine and HL= 4-aminobenzenesulfonic acid. To our knowledge, this is the first complex reported which contains dep as a ligand.

Selected parameters are listed in Table 1. The Ag^{I} cation is four-coordinated by three N atoms from two different dep ligands and one $-NH_2$ group of *L*, and one sulfonate O atom in a distorted tetrahedral coordination geometry (Fig. 1). The Ag—N distances in (I) are similar to those in related compounds (Liu *et al.*, 2007). The Ag^{I} centers are doubly bridged by both types of ligands to form a one-dimensional chain (Fig. 2). Finally, N—H…O hydrogen bonds complete the structure of (I) (Table 2).

Experimental

An aqueous solution (16 ml) of 4-aminobenzenesulfonic acid (1 mmol) was added to solid Ag_2CO_3 (0.5 mmol) and stirred for several minutes until no further CO_2 was given off. The 2,3-diethylpyrazine (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Crystals of (I) were obtained by evaporation of the solution for one week at room temperature.

Refinement

H atoms of C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(\text{carrier})$. H atoms bonded to N atom were located in a difference map and refined freely, and with $U_{iso}(H)=1.2U_{eq}(N)$.

Figures

Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1.5 - x, y, z - 1/2; (ii) 1.5 - x, y, z + 1/2.

Fig. 2. View of the chain structure of (I).

catena-Poly[silver(I)-µ-4-aminobenzenesulfonato-µ-2,3-diethylpyrazine]

 $F_{000} = 840$

 $D_{\rm x} = 1.817 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 11246 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 1.48 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless

 $0.31 \times 0.22 \times 0.17 \text{ mm}$

Crystal data

 $[Ag(C_{6}H_{6}NO_{3}S)(C_{8}H_{8}N_{2})]$ $M_{r} = 416.24$ Orthorhombic, $Pca2_{1}$ Hall symbol: P 2c -2ac a = 8.6095 (17) Å b = 12.322 (3) Å c = 14.342 (3) Å $V = 1521.5 (5) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku R-AXIS RAPID CCD diffractometer	3443 independent reflections
Radiation source: rotating anode	2756 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.626, T_{\max} = 0.779$	$l = -18 \rightarrow 18$
13887 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.2752P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
3443 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
207 parameters	Extinction correction: none
3 restraints	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.02 (4)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.75241 (4)	0.26431 (3)	0.84998 (7)	0.04695 (10)
N2	0.7161 (4)	0.2166 (3)	0.6974 (3)	0.0320 (8)
N3	0.5572 (4)	0.3870 (4)	0.8990 (2)	0.0418 (9)
C2	0.3331 (4)	0.3028 (3)	1.1066 (3)	0.0314 (7)
H2	0.2491	0.2583	1.1208	0.038*
C1	0.4096 (4)	0.3569 (4)	1.1770 (2)	0.0309 (9)
C5	0.5817 (5)	0.4358 (4)	1.0639 (3)	0.0370 (10)
Н5	0.6650	0.4808	1.0493	0.044*
C4	0.5046 (4)	0.3807 (3)	0.9936 (3)	0.0329 (8)
C3	0.3805 (4)	0.3143 (4)	1.0149 (3)	0.0335 (10)
Н3	0.3287	0.2773	0.9677	0.040*
C15	0.6074 (5)	0.2709 (4)	0.6484 (3)	0.0379 (12)
H15	0.5352	0.3134	0.6800	0.046*
C16	0.8158 (4)	0.1530 (4)	0.6489 (3)	0.0297 (9)
C17	0.9340 (5)	0.0913 (4)	0.7056 (3)	0.0369 (10)
H17A	1.0324	0.0920	0.6727	0.044*
H17B	0.9489	0.1284	0.7646	0.044*
C18	0.8893 (6)	-0.0230 (5)	0.7244 (4)	0.0603 (15)
H18A	0.9691	-0.0576	0.7606	0.090*
H18B	0.8766	-0.0609	0.6664	0.090*
H18C	0.7933	-0.0245	0.7584	0.090*
C6	0.5349 (5)	0.4242 (4)	1.1560 (3)	0.0360 (10)
H6	0.5868	0.4610	1.2032	0.043*
02	0.2572 (3)	0.4407 (3)	1.3140 (2)	0.0509 (8)
O3	0.4825 (3)	0.3370 (3)	1.3513 (2)	0.0602 (9)
01	0.2466 (4)	0.2486 (3)	1.2958 (3)	0.0693 (14)
S1	0.34471 (10)	0.34335 (8)	1.29348 (7)	0.0329 (2)
C10	0.6010 (5)	0.2649 (4)	0.5534 (3)	0.0349 (11)
H10	0.5247	0.3036	0.5217	0.042*
N1	0.7017 (4)	0.2050 (4)	0.5049 (3)	0.0334 (8)
C11	0.8082 (5)	0.1482 (4)	0.5518 (3)	0.0325 (10)
C12	0.9145 (5)	0.0780 (4)	0.4936 (3)	0.0429 (11)
H12A	1.0060	0.0605	0.5301	0.051*

supplementary materials

H12B	0.9483	0.1193	0.4397	0.051*
C13	0.8404 (7)	-0.0264 (5)	0.4606 (4)	0.0612 (15)
H13A	0.9143	-0.0670	0.4246	0.092*
H13B	0.7516	-0.0098	0.4227	0.092*
H13C	0.8084	-0.0684	0.5135	0.092*
HN1	0.475 (3)	0.378 (4)	0.866 (3)	0.054 (15)*
HN2	0.605 (5)	0.447 (2)	0.895 (4)	0.064 (17)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.04408 (15)	0.0751 (2)	0.02168 (13)	-0.00020 (18)	0.00003 (12)	-0.0028 (3)
N2	0.0346 (16)	0.039 (2)	0.0222 (18)	0.0021 (16)	-0.0005 (16)	0.0016 (16)
N3	0.040 (2)	0.058 (3)	0.0277 (17)	0.0066 (18)	0.0032 (16)	0.0097 (17)
C2	0.0300 (16)	0.0350 (19)	0.0292 (18)	-0.0006 (13)	0.000 (2)	0.0033 (19)
C1	0.0307 (18)	0.038 (3)	0.0240 (17)	0.0030 (16)	0.0004 (14)	-0.0017 (17)
C5	0.035 (2)	0.033 (3)	0.043 (2)	-0.0019 (18)	0.0019 (19)	0.0040 (18)
C4	0.0346 (19)	0.037 (2)	0.0274 (17)	0.0097 (17)	0.0035 (16)	0.0046 (17)
C3	0.0314 (19)	0.042 (3)	0.027 (2)	0.0023 (17)	-0.0059 (16)	-0.0020 (18)
C15	0.032 (2)	0.051 (4)	0.030 (2)	0.009 (2)	0.001 (2)	-0.004 (2)
C16	0.028 (2)	0.035 (3)	0.0264 (19)	0.0024 (19)	-0.0020 (17)	-0.0008 (18)
C17	0.035 (2)	0.039 (3)	0.037 (2)	0.0042 (18)	-0.0093 (19)	0.0038 (19)
C18	0.070 (3)	0.044 (3)	0.067 (3)	0.000 (3)	-0.022 (3)	0.017 (3)
C6	0.039 (2)	0.036 (3)	0.034 (2)	0.0005 (18)	-0.0047 (18)	-0.0021 (18)
02	0.0565 (18)	0.057 (2)	0.0394 (16)	0.0259 (15)	0.0059 (13)	-0.0043 (14)
03	0.0433 (15)	0.109 (3)	0.0280 (14)	0.0254 (17)	-0.0057 (14)	0.007 (2)
01	0.109 (4)	0.060 (3)	0.039 (2)	-0.040 (2)	0.027 (2)	-0.0145 (15)
S1	0.0359 (4)	0.0391 (5)	0.0235 (4)	0.0027 (4)	-0.0001 (4)	-0.0027 (4)
C10	0.032 (2)	0.041 (3)	0.032 (2)	0.008 (2)	-0.0043 (18)	0.0017 (19)
N1	0.0310 (16)	0.044 (2)	0.0247 (19)	-0.0011 (18)	0.0029 (17)	0.0011 (17)
C11	0.031 (2)	0.036 (3)	0.031 (2)	-0.003 (2)	0.0013 (17)	0.0013 (18)
C12	0.034 (2)	0.056 (3)	0.039 (2)	0.003 (2)	0.0070 (19)	-0.007 (2)
C13	0.060 (3)	0.064 (4)	0.060(3)	-0.005 (3)	0.011 (3)	-0.028 (3)

Geometric parameters (Å, °)

Ag1—N2	2.287 (4)	C17—C18	1.486 (7)
Ag1—N3	2.367 (4)	C17—H17A	0.9700
Ag1—N1 ⁱ	2.372 (4)	С17—Н17В	0.9700
Ag1—O3 ⁱⁱ	2.451 (3)	C18—H18A	0.9600
N2—C15	1.348 (6)	C18—H18B	0.9600
N2—C16	1.355 (6)	C18—H18C	0.9600
N3—C4	1.432 (5)	С6—Н6	0.9300
N3—HN1	0.86 (3)	O2—S1	1.446 (3)
N3—HN2	0.85 (3)	O3—S1	1.450 (3)
C2—C1	1.378 (5)	O3—Ag1 ⁱ	2.451 (3)
C2—C3	1.384 (6)	O1—S1	1.441 (3)
C2—H2	0.9300	C10—N1	1.334 (6)

C1—C6	1.393 (6)	C10—H10	0.9300
C1—S1	1.769 (4)	N1—C11	1.335 (6)
C5—C4	1.385 (6)	N1—Ag1 ⁱⁱ	2.372 (4)
C5—C6	1.388 (6)	C11—C12	1.510 (6)
С5—Н5	0.9300	C12—C13	1.512 (7)
C4—C3	1.380 (6)	C12—H12A	0.9700
С3—Н3	0.9300	C12—H12B	0.9700
C15—C10	1.367 (5)	C13—H13A	0.9600
C15—H15	0.9300	C13—H13B	0.9600
C16—C11	1.395 (4)	C13—H13C	0.9600
C16—C17	1.508 (6)		
N2—Ag1—N3	110.54 (13)	С16—С17—Н17В	108.8
N2—Ag1—N1 ⁱ	147.11 (11)	H17A—C17—H17B	107.7
N3—Ag1—N1 ⁱ	92.12 (13)	C17—C18—H18A	109.5
N2—Ag1—O3 ⁱⁱ	103.22 (13)	С17—С18—Н18В	109.5
N3—Ag1—O3 ⁱⁱ	115.15 (14)	H18A—C18—H18B	109.5
N1 ⁱ —Ag1—O3 ⁱⁱ	87.14 (12)	C17—C18—H18C	109.5
C15—N2—C16	117.3 (4)	H18A—C18—H18C	109.5
C15—N2—Ag1	117.8 (3)	H18B-C18-H18C	109.5
C16—N2—Ag1	123.6 (3)	C5—C6—C1	119.5 (4)
C4—N3—Ag1	118.1 (3)	С5—С6—Н6	120.2
C4—N3—HN1	104 (3)	С1—С6—Н6	120.2
Ag1—N3—HN1	110 (3)	S1—O3—Ag1 ⁱ	141.0 (2)
C4—N3—HN2	105 (4)	01—S1—O2	111.2 (2)
Ag1—N3—HN2	101 (4)	O1—S1—O3	115.0 (3)
HN1—N3—HN2	118 (5)	O2—S1—O3	110.8 (2)
C1—C2—C3	120.4 (4)	01—S1—C1	106.5 (2)
C1—C2—H2	119.8	O2—S1—C1	106.1 (2)
С3—С2—Н2	119.8	O3—S1—C1	106.67 (18)
C2—C1—C6	119.9 (3)	N1—C10—C15	121.6 (5)
C2—C1—S1	119.7 (3)	N1-C10-H10	119.2
C6—C1—S1	120.4 (3)	C15-C10-H10	119.2
C4—C5—C6	120.2 (4)	C10—N1—C11	118.3 (4)
С4—С5—Н5	119.9	C10—N1—Ag1 ⁱⁱ	115.2 (3)
С6—С5—Н5	119.9	C11—N1—Ag1 ⁱⁱ	121.2 (3)
C3—C4—C5	120.0 (4)	N1-C11-C16	120.8 (5)
C3—C4—N3	119.2 (4)	N1-C11-C12	116.0 (4)
C5—C4—N3	120.7 (4)	C16—C11—C12	123.2 (5)
C4—C3—C2	120.0 (4)	C11—C12—C13	113.8 (4)
С4—С3—Н3	120.0	C11—C12—H12A	108.8
С2—С3—Н3	120.0	C13—C12—H12A	108.8
N2—C15—C10	121.4 (5)	C11—C12—H12B	108.8
N2—C15—H15	119.3	C13—C12—H12B	108.8
C10—C15—H15	119.3	H12A—C12—H12B	107.7
N2—C16—C11	120.5 (5)	C12—C13—H13A	109.5
N2—C16—C17	116.2 (3)	C12—C13—H13B	109.5
C11—C16—C17	123.3 (5)	H13A—C13—H13B	109.5

supplementary materials

C18—C17—C16	113.7 (4)	C12—C13—H13C	109.5
C18—C17—H17A	108.8	H13A—C13—H13C	109.5
C16—C17—H17A	108.8	H13B—C13—H13C	109.5
C18—C17—H17B	108.8		
N3—Ag1—N2—C15	8.8 (4)	C4—C5—C6—C1	-0.2 (7)
N1 ⁱ —Ag1—N2—C15	139.5 (3)	C2—C1—C6—C5	-0.1 (7)
O3 ⁱⁱ —Ag1—N2—C15	-114.9 (3)	S1—C1—C6—C5	-178.4 (4)
N3—Ag1—N2—C16	175.5 (4)	Ag1 ⁱ —O3—S1—O1	82.1 (4)
N1 ⁱ —Ag1—N2—C16	-53.8 (5)	Ag1 ⁱ	-150.8 (3)
O3 ⁱⁱ —Ag1—N2—C16	51.8 (4)	Ag1 ⁱ —O3—S1—C1	-35.7 (4)
N2—Ag1—N3—C4	145.8 (3)	C2-C1-S1-O1	17.3 (4)
N1 ⁱ —Ag1—N3—C4	-9.9 (3)	C6—C1—S1—O1	-164.4 (4)
O3 ⁱⁱ —Ag1—N3—C4	-97.7 (3)	C2-C1-S1-O2	-101.3 (4)
C3—C2—C1—C6	0.4 (6)	C6—C1—S1—O2	77.0 (4)
C3—C2—C1—S1	178.7 (3)	C2-C1-S1-O3	140.5 (3)
C6—C5—C4—C3	0.3 (7)	C6—C1—S1—O3	-41.2 (4)
C6—C5—C4—N3	-176.3 (4)	N2-C15-C10-N1	0.1 (9)
Ag1—N3—C4—C3	-90.5 (4)	C15-C10-N1-C11	1.5 (8)
Ag1—N3—C4—C5	86.1 (5)	C15—C10—N1—Ag1 ⁱⁱ	-153.2 (5)
C5—C4—C3—C2	0.0 (6)	C10-N1-C11-C16	-1.2 (8)
N3—C4—C3—C2	176.7 (4)	Ag1 ⁱⁱ —N1—C11—C16	151.9 (4)
C1—C2—C3—C4	-0.3 (6)	C10-N1-C11-C12	177.5 (4)
C16—N2—C15—C10	-2.1 (8)	Ag1 ⁱⁱ —N1—C11—C12	-29.4 (6)
Ag1-N2-C15-C10	165.5 (5)	N2—C16—C11—N1	-0.7 (9)
C15—N2—C16—C11	2.3 (8)	C17—C16—C11—N1	-179.6 (4)
Ag1—N2—C16—C11	-164.4 (4)	N2-C16-C11-C12	-179.3 (4)
C15—N2—C16—C17	-178.7 (4)	C17—C16—C11—C12	1.9 (9)
Ag1-N2-C16-C17	14.5 (6)	N1-C11-C12-C13	-77.5 (6)
N2—C16—C17—C18	98.0 (5)	C16—C11—C12—C13	101.2 (6)
C11—C16—C17—C18	-83.1 (6)		

Symmetry codes: (i) -x+3/2, y, z+1/2; (ii) -x+3/2, y, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
N3—HN2···O2 ⁱⁱⁱ	0.85 (3)	2.16 (3)	2.923 (6)	149 (5)
N3—HN1···O2 ^{iv}	0.86 (3)	2.27 (3)	3.042 (5)	150 (4)
Symmetry codes: (iii) $-x+1$, $-y+1$, $z-1/2$; (iv) $-x+1/2$, y , $z-1/2$.				

Fig. 1

Fig. 2

